Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Med Virol ; 95(4): e28680, 2023 04.
Article in English | MEDLINE | ID: covidwho-2256895

ABSTRACT

SARS-CoV-2 has developed a variety of approaches to counteract host innate antiviral immunity to facilitate its infection, replication and pathogenesis, but the molecular mechanisms that it employs are still not been fully understood. Here, we found that SARS-CoV-2 NSP8 inhibited the production of type I and III interferons (IFNs) by acting on RIG-I/MDA5 and the signaling molecules TRIF and STING. Overexpression of NSP8 downregulated the expression of type I and III IFNs stimulated by poly (I:C) transfection and infection with SeV and SARS-CoV-2. In addition, NSP8 impaired IFN expression triggered by overexpression of the signaling molecules RIG-I, MDA5, and MAVS, instead of TBK1 and IRF3-5D, an active form of IRF3. From a mechanistic view, NSP8 interacts with RIG-I and MDA5, and thereby prevents the assembly of the RIG-I/MDA5-MAVS signalosome, resulting in the impaired phosphorylation and nuclear translocation of IRF3. NSP8 also suppressed the TRIF- and STING- induced IFN expression by directly interacting with them. Moreover, ectopic expression of NSP8 promoted virus replications. Taken together, SARS-CoV-2 NSP8 suppresses type I and III IFN responses by disturbing the RIG-I/MDA5-MAVS complex formation and targeting TRIF and STING signaling transduction. These results provide new insights into the pathogenesis of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adaptor Proteins, Vesicular Transport/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferons , SARS-CoV-2/metabolism , Signal Transduction
2.
J Med Virol ; 95(3): e28561, 2023 03.
Article in English | MEDLINE | ID: covidwho-2229432

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a poor inducer of innate antiviral immunity, and the underlying mechanism still needs further investigation. Here, we reported that SARS-CoV-2 NSP7 inhibited the production of type I and III interferons (IFNs) by targeting the RIG-I/MDA5, Toll-like receptor (TLR3)-TRIF, and cGAS-STING signaling pathways. SARS-CoV-2 NSP7 suppressed the expression of IFNs and IFN-stimulated genes induced by poly (I:C) transfection and infection with Sendai virus or SARS-CoV-2 virus-like particles. NSP7 impaired type I and III IFN production activated by components of the cytosolic dsRNA-sensing pathway, including RIG-I, MDA5, and MAVS, but not TBK1, IKKε, and IRF3-5D, an active form of IRF3. In addition, NSP7 also suppressed TRIF- and STING-induced IFN responses. Mechanistically, NSP7 associated with RIG-I and MDA5 prevented the formation of the RIG-I/MDA5-MAVS signalosome and interacted with TRIF and STING to inhibit TRIF-TBK1 and STING-TBK1 complex formation, thus reducing the subsequent IRF3 phosphorylation and nuclear translocation that are essential for IFN induction. In addition, ectopic expression of NSP7 impeded innate immune activation and facilitated virus replication. Taken together, SARS-CoV-2 NSP7 dampens type I and III IFN responses via disruption of the signal transduction of the RIG-I/MDA5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways, thus providing novel insights into the interactions between SARS-CoV-2 and innate antiviral immunity.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Signal Transduction , Interferons , Immunity, Innate , Nucleotidyltransferases/metabolism , Antiviral Agents , Adaptor Proteins, Vesicular Transport/genetics
3.
Biomed Res Int ; 2022: 5956526, 2022.
Article in English | MEDLINE | ID: covidwho-2162052

ABSTRACT

Background: Lung squamous cell carcinoma (LUSC) has poor survival prognosis and few clinical treatment options. We urgently need to explore new therapeutic drugs in clinical practice. Cepharanthine (CEP) has been shown to have anticancer effects in several tumors, but the mechanism of CEP in treating LUSC has not been reported. Methods: SwissTargetPrediction, PharmMapper, and GeneCards were used to identify targets of CEP and LUSC. Further topological analysis was used to obtain hub genes via Cytoscape. Molecular docking was carried out to verify the combination of CEP with hub targets. Based on bioinformatics, we first analyzed the expression and survival of hub targets in LUSC and further analyzed the correlation between hub targets and cancer stemness, immune cell infiltration, and tumor mutation burden (TMB). Results: A total of 41 targets were identified. Further topological analysis identified 6 hub genes: AURKA, CCNA2, CCNE1, CDK1, CHEK1, and PLK1. Molecular docking analysis showed that CEP had stable binding to all these 6 target proteins. In-depth bioinformatics analysis of these 6 targets showed that high expression of these targets were positively correlated with cancer stemness index and negatively correlated with tumor infiltrating immune cells. In immune subtype analysis, the expressions of these targets were significantly decreased in inflammatory tumors. In addition, we also found that the expressions of these targets were positively correlated with TMB. Conclusion: Based on multidisciplinary analysis, we preliminarily identified potential targets of CEP for LUSC treatment and suggested that CEP may play a role in regulating LUSC stemness.


Subject(s)
Carcinoma, Squamous Cell , Network Pharmacology , Humans , Molecular Docking Simulation , Computational Biology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Lung
4.
J Med Virol ; 94(11): 5174-5188, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1905900

ABSTRACT

A characteristic feature of COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the dysregulated immune response with impaired type I and III interferon (IFN) expression and an overwhelming inflammatory cytokine storm. RIG-I-like receptors (RLRs) and cGAS-STING signaling pathways are responsible for sensing viral infection and inducing IFN production to combat invading viruses. Multiple proteins of SARS-CoV-2 have been reported to modulate the RLR signaling pathways to achieve immune evasion. Although SARS-CoV-2 infection also activates the cGAS-STING signaling by stimulating micronuclei formation during the process of syncytia, whether SARS-CoV-2 modulates the cGAS-STING pathway requires further investigation. Here, we screened 29 SARS-CoV-2-encoded viral proteins to explore the viral proteins that affect the cGAS-STING signaling pathway and found that SARS-CoV-2 open reading frame 10 (ORF10) targets STING to antagonize IFN activation. Overexpression of ORF10 inhibits cGAS-STING-induced interferon regulatory factor 3 phosphorylation, translocation, and subsequent IFN induction. Mechanistically, ORF10 interacts with STING, attenuates the STING-TBK1 association, and impairs STING oligomerization and aggregation and STING-mediated autophagy; ORF10 also prevents the endoplasmic reticulum (ER)-to-Golgi trafficking of STING by anchoring STING in the ER. Taken together, these findings suggest that SARS-CoV-2 ORF10 impairs the cGAS-STING signaling by blocking the translocation of STING and the interaction between STING and TBK1 to antagonize innate antiviral immunity.


Subject(s)
COVID-19 , Interferon Type I , Autophagy , Humans , Immunity, Innate , Interferon Type I/genetics , Interferons , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Open Reading Frames , Protein Serine-Threonine Kinases/genetics , SARS-CoV-2 , Viral Proteins/metabolism
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.24.485560

ABSTRACT

The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. A recent study found that TRIM7 inhibits human enteroviruses through ubiquitination and proteasomal degradation of viral 2BC protein by targeting the 2C moiety of 2BC protein. Here, we report the crystal structures of TRIM7 in complex with 2C, where the C-terminal region of 2C is inserted into a positively charged groove of the TRIM7 PRY-SPRY domain. Structure-guided biochemical studies revealed the C-terminus glutamine residue of 2C as the primary determinant for TRIM7 binding. Such a glutamine-end motif binding mechanism can be successfully extended to other substrates of TRIM7. More importantly, leveraged by this finding, we were able to identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. We further show that TRIM7 may function as a restriction factor to promote the degradation of the viral proteins of norovirus and SARS-CoV-2, thereby restoring the Type I interferon immune response and inhibiting viral infection. Several crystal structures of TRIM7 in complex with SARS-CoV-2 proteins are also determined, and a conserved C-terminus glutamine-specific interaction is observed. These findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.

6.
Signal transduction and targeted therapy ; 7(1), 2022.
Article in English | EuropePMC | ID: covidwho-1652408

ABSTRACT

As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule (avSG) formation. Moreover, NSP5 and N suppressed IFN expression induced by infection of Sendai virus or transfection of a synthetic mimic of dsRNA, poly (I:C), inhibiting TBK1 and IRF3 phosphorylation, and restraining the nuclear translocalization of IRF3. Furthermore, HEK293T cells with ectopic expression of NSP5 or N protein were less resistant to vesicular stomatitis virus infection. Mechanistically, NSP5 suppressed avSG formation and disrupted RIG-I–MAVS complex to attenuate the RIG-I–mediated antiviral immunity. In contrast to the multiple targets of NSP5, the N protein specifically targeted cofactors upstream of RIG-I. The N protein interacted with G3BP1 to prevent avSG formation and to keep the cofactors G3BP1 and PACT from activating RIG-I. Additionally, the N protein also affected the recognition of dsRNA by RIG-I. This study revealed the intimate correlation between SARS-CoV-2, the stress response, and innate antiviral immunity, shedding light on the pathogenic mechanism of COVID-19.

7.
J Med Virol ; 93(9): 5376-5389, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363676

ABSTRACT

The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). The strategy used by SARS-CoV-2 to evade antiviral immunity needs further investigation. Here, we reported that SARS-CoV-2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS-CoV-2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε, rather than IRF3-5D, which is the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of the cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. A mechanistic analysis revealed that the SARS-CoV-2 ORF9b protein interacted with RIG-I, MDA-5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS-CoV-2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS-CoV-2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS-CoV-2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID-19.


Subject(s)
DEAD Box Protein 58/immunology , Immune Evasion/genetics , Interferons/immunology , Nucleotidyltransferases/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Animals , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/genetics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Nucleotidyltransferases/genetics , Phosphoproteins/genetics , Phosphoproteins/immunology , Plasmids/chemistry , Plasmids/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 3/genetics , Transfection , Vero Cells , Virus Replication/immunology
8.
Huan Jing Ke Xue ; 42(7): 3091-3098, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: covidwho-1296233

ABSTRACT

The COVID-19 pandemic has endangered human health and production since 2019. As an emerging disease caused by SARS-CoV-2, its potential transmissibility via aerosols has caused heated debate. This work summarizes the current research findings on virus aerosol generation, aerodynamic properties, and environmental influencing factors on their survivability in order to elucidate coronavirus transmission via aerosols. The occurrence and distinction of SARS-CoV-2, SARS-CoV-1, and MERS-CoV in real atmospheric environments are summarized. The deficiencies of existing research and directions for necessary future research on confirming the airborne transmission mechanism of coronavirus as well as the need for multidisciplinary research are discussed.


Subject(s)
COVID-19 , Pandemics , Aerosols , Humans , SARS-CoV-2
9.
Bioeng Transl Med ; 6(1): e10202, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-985967

ABSTRACT

The S1 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein contains an immunogenic receptor-binding domain (RBD), which is a promising candidate for the development of a potential vaccine. This study demonstrated that intradermal delivery of an S-RBD vaccine using a dissolvable microneedle skin patch can induce both significant B-cell and significant T-cell responses against S-RBD. Importantly, the outcomes were comparable to that of conventional bolus injection.

10.
J Med Virol ; 92(11): 2693-2701, 2020 11.
Article in English | MEDLINE | ID: covidwho-942394

ABSTRACT

The ongoing outbreak of a new coronavirus (2019-nCoV, or severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) has caused an epidemic of the acute respiratory syndrome known as coronavirus disease (COVID-19) in humans. SARS-CoV-2 rapidly spread to multiple regions of China and multiple other countries, posing a serious threat to public health. The spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 may use the same host cellular receptor, angiotensin-converting enzyme 2 (ACE2), for entering host cells. The affinity between ACE2 and the SARS-CoV-2 S protein is much higher than that of ACE2 binding to the SARS-CoV S protein, explaining why SARS-CoV-2 seems to be more readily transmitted from human to human. Here, we report that ACE2 can be significantly upregulated after infection of various viruses, including SARS-CoV-1 and SARS-CoV-2, or by the stimulation with inflammatory cytokines such as interferons. We propose that SARS-CoV-2 may positively induce its cellular entry receptor, ACE2, to accelerate its replication and spread; high inflammatory cytokine levels increase ACE2 expression and act as high-risk factors for developing COVID-19, and the infection of other viruses may increase the risk of SARS-CoV-2 infection. Therefore, drugs targeting ACE2 may be developed for the future emerging infectious diseases caused by this cluster of coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , Receptors, Virus/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/immunology , COVID-19/virology , Gene Expression , HEK293 Cells , Humans , Interferons/pharmacology , Microarray Analysis , Protein Binding , Receptors, Virus/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Up-Regulation
11.
J Zhejiang Univ Sci B ; 21(9): 749-751, 2020.
Article in English | MEDLINE | ID: covidwho-745668

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was found initially in Wuhan, China in early December 2019. The pandemic has spread to 216 countries and regions, infecting more than 23310 000 people and causing over 800 000 deaths globally by Aug. 24, 2020, according to World Health Organization (https://www.who.int/emergencies/diseases/ novel-coronavirus-2019). Fever, cough, and dyspnea are the three common symptoms of the condition, whereas the conventional transmission route for SARS-CoV-2 is through droplets entering the respiratory tract. To date, infection control measures for COVID-19 have been focusing on the involvement of the respiratory system. However, ignoring potential faecal transmission and the gastrointestinal involvement of SARS-CoV-2 may result in mistakes in attempts to control the pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Feces/virology , Gastrointestinal Diseases/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Betacoronavirus/genetics , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Environmental Microbiology , Humans , Models, Biological , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Virus Shedding
12.
Mycobiology ; 48(3):233-239, 2020.
Article in English | KoreaMed | ID: covidwho-722089

ABSTRACT

A small-spored Alternariawas found from black spots of storaged Koerle pear (Pyrus sinkiangensis), one of the economically important fruit in Xinjiang province, China. The morphology is similar to A. limoniasperaebut obviously different in secondary conidiophores and conidial septa. A phylogenetic analysis using sequence datasets of ITS, GAPDH, TEF1, RPB2, Alt a1, OPA10–2, and EndoPG genes revealed that it belonged to the Alternaria alternatacomplex group. Pathogenicity tests illustrated that the fungus was the causal pathogen of black spot on Koerle pear fruit.

SELECTION OF CITATIONS
SEARCH DETAIL